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Modeling Discontinuities in Dielectric-Loaded
Waveguides
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Abstract —The mode-matching technique is applied to model step dis-
continuities in dielectric-loaded cylindrical waveguide excited by hybrid
modes. It is shown that the solution for the fields obtained by mode
matching does not converge unless complex modes are included in the field
expansion, If the structure parameters and operating frequency allow for
the existence of complex modes, then the purely propagating and evanes-
cent mode fields do not form a complete set, unless complemented by the
complex mode fields. Numerical results are presented that clearly illustrate
the role of the complex mode fields in the modeling of step discontinuities.
Examples are included illustrating the representation of the step disconti-
nuities by a multiport scattering matrix.

I. INTRODUCTION

T HAS BEEN shown [1]-[3] that inhomogeneously filled
Iwaveguides can support, in addition to the evanescent
and the propagating modes, complex modes, characterized
by complex propagation constants. Recently, a generalized
rigorous analysis of lossless inhomogeneously filled wave-
guides [4] and numerical methods for the investigation of
their properties [5] have been presented, which derived
many important properties of complex modes. Generally,
numerical search for the propagation constants of complex
modes is a much more difficult problem than for the
normal propagating and evanescent modes. Complex
modes usually exist for very limited ranges of structure
parameters and frequency. When solving for discontinuity
problems in guiding structures which could support com-
plex modes one is always faced with the problem of
whether it is necessary to consider and include complex
modes in the solution. This question has recently been
addressed for the problem of finline discontinuities [6],
where it was shown that ignoring a complex mode results
in violation of complex power conservation across the
discontinuity.

This paper analyzes the step discontinuity problem in a
dielectric-loaded waveguide, together with the role of com-
plex modes in the solution of such a problem. The general
structure under consideration is shown in Fig. 1(a). It
consists of two semi-infinite dielectric-loaded cylindrical
waveguides of different cross-sectional dimensions joined
at the plane z = 0. A single hybrid mode of unit amplitude
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Fig. 1. Step discontinuity at the junction between two semr-infinite
diclectric-loaded waveguides. (b) Dielectric-loaded waveguide

(HE,,,) is incident from z <O on the discontinuity. (The
mode designation used throughout this paper is that intro-
duced in [7]. Here HE, , denotes a “hybrid” mode whose
fields have ¢ variations sinn¢ and cosn¢ and whose
propagation constants are the mth root of the characteris-
tic equation. This designation should not be confused with
“hybrid magnetic” HE and the “hybrid electric” EH des-
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ignation;) It is desired to determine the amplitudes of all

the reflected and transmitted hybrid modes. In particular,
if complex modes can exist in either or both waveguides
and these complex modes are. included or excluded from
the solution, what are the difference in the resulting scat-
tering matrices?

Structures of this type can be encountered in applica-
tions in the millimeter-wave and optical frequency bands,
such as in periodic structures for filtering, traveling wave
tubes, backward wave oscillators, antennas and radiating
elements, branching couplers for optical fibers, and mil-
limeter-wave dielectric-loaded waveguides. The method of
analysis and the results provide an accurate circuit model
for the characterization of the step discontinuity in a
dielectric waveguide for any hybrid mode excitation.

Before presenting the solution using mode matching, the
properties of complex modes on cylindrical dielectric-
loaded waveguides are summerized and typical numerical
data on these modes are presented.

II. ComPLEX MODES ON DIELECTRIC-
LoADED WAVEGUIDES

Consider the infinite dielectric-loaded circular cylindri-
cal waveguide shown in Fig. 1(b). Suppressing the axial
propagation factor e~ ** and time variation factor e/*’, the
electromagnetic field components of the hybrid HE,,
modes in the guide are given by [7]

E,= AR, (§;r)cosnd (1a)

jouH, = ayAP,(£,r)sin no (1b)
E 1 P(& .
w = — ————
“‘Y—H¢ £; an  —ki/v? R, (&)
(1c)
Eq‘) . n o
; — Ay sin n¢
w — e
uH, ¢ nk’r/y? - a
y
Rn(gir)/gir
(1d)
Pn/(gir)
where i=1forO0<r<agand i=2fora<r<b, A1is an

arbitrary constant, and

g=ki+y’ g2=—-(k3+v?) (2a)
ki= Erlk(% k3= erzk(z) kg = woeo (2b)
Pn(‘slr):']n(élr)’ O0<r<a (33)
Pn(£2r) .
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Fig. 2. (w-pB) diagram for the region z<0. ¢=0.35 in,, d=05 in,

€, =37 ¢,=1
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U, .
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n_{gﬂ B } (60)

In (3) through (6), J,(-), I,(-), and K, (-) are the Bessel
functions and the modified Bessel functions of the first
and second kinds, respectively.

The characteristic equation for the propagation constant
vy is

U?+ kga®V, W, =0 ™)

where

W =le

n n

WEa) | Rifba)]
§1a ‘ & £,a .

The propagation constant v is related to & and &, by (2).

Complex modes are characterized by a complex propa-
gation constant y which is obtained by searching for
complex roots of the characteristic equation (7). Since the
characteristic function in (7) is a real even function of v,
its complex roots occur in conjugate pairs. Further, if vy is
a root, then (—y) is also a root. It therefore results that
there is always a quadruple of complex roots: + vy and
4 v*. In an infinite guide with no sources at infinity, a
combination of a pair of complex conjugate modes must
always be present. This pair will carry only reactive power,
no net real average power. Typical (w-f) diagrams for
two dielectric-loaded waveguides with parameters that ai-
low complex modes to be present are shown in Figs. 2 and
3. In these figures, the propagation constants y = a+ jB of

(83)
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Fig. 3. (w-p) diagram for the region z>0. ¢ =025 in,, b=0.5 in,

€, =37,¢,=1

the hybrid modes with angular variation e/* in the dielec-
tric-loaded waveguide are plotted versus frequency. The
solid curve is either the purely real attenuation constant
(aa) or the purely imaginary propagation constant (Ba).
The dotted curves are the complex propagation constant
va. Complex propagation in Fig. 3 occurs in the frequency
ranges 1.7 GHz < f £ 3.01 GHz and 5.22 GHz < f < 5.64
GHz for the hybrid modes (HE,;, HE,;) and (HE,,
HE, (), respectively. It has been shown [4] that the complex
modes are linearly independent of all other propagating
and evanescent modes occurring at the same frequency.
Therefore expansion of any arbitrary field over the cross
section of the dielectric-loaded waveguide at any frequency
requires the inclusion of all complex modes that may exist.
Hybrid modes, including complex modes, are complete
and orthogonal over the cross sections of the guide. The
orthogonality is expressed by the inner product:

(& by = fexh ds=(,h)8,  (9)

where j and k stand for hybrid modes HE,,, and HE .,
with
8,=0 forj+k

=1 for j=k

and é s h . are the transverse electric and magnetic fields of
the HE,, and HE , . modes whose components E,, E,,
H,, and H, are given by (lc) and (1d). Closed-form
expressions for the inner products (9) are given in the
Appendix.

The above properties are used in the following section to
obtain a model for the step discontinuities of the dielec-
tric-loaded waveguide shown in Fig. 1(a) using the mode-
matching technique.

III. DiSCONTINUITY CHARACTERIZATION

Consider a hybrid HE,,, mode incident from z <0 on
the step discontinuity of the two semi-infinite dielectric-
loaded waveguides shown in Fig. 1(a). Due to the presence
of this discontinuity, reflected and transmitted fields will
be generated in the regions z <0 and z > 0, respectively.
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Due to the uniformity of the structure in ¢, all the fields
will have the same azimuthal variation (e/”?) as the inci-
dent hybrid mode. In order to calculate the reflected and
transmitted fields the total transverse fields are expanded
in terms of the appropriate hybrid waveguide modes on
both sides of the discontinuity. Thus:

Sfor z{0:
E,=ége ™+ ) A6, e (10a)
J
H=hgpe =Y Ak, et (10b)
j
for 20:
E, =} Bépe " (11a)
k
H,= Y B hpe 1, (11b)
k

Here ¢, ﬁAj, Yaj» €pis szk, and vyg, are the transverse
electric and magnetic fields and the propagation constants
of the hybrid modes in the regions z < 0 and z > 0, respec-
tively. Enforcing the boundary conditions requiring that
the tangential electric and magnetic fields be continuous at
z =0 then gives

ént ZAjeAj=
J

hay— ZAJ‘}:AJ- = ZBk/:l\Bk'

Z B,y (123)
k

(12b)

Taking the inner product of (12a) with A 4, and é, with
(12b) and using the orthogonality relations (9), the follow-
ing infinite systems of equations in the unknown coeffi-
cients 4, and B, are obtained.

Z)(ikBk =2(é,, ;1,41>3i1 (13a)
k
Zy;kBkzzAi<éA,,ﬁAi> (13b)
k
where
= <éBk7ﬁA,>+<éAk9ﬁBk> (14a)
Yy = <é3k>ﬁAi>”<5AkthBk>' (14b)

The numerical solution of the system (13a) for the un-
knowns B, is achieved by truncating the infinite matrix
and solving the resulting finite system of linear equations.
Then the A,’s are obtained using (13b).

If the modes included in (10) and (11) form a complete
set (which must include any complex modes), then the
solution for the reflected and transmitted field coefficients
will always converge to the correct answer. If the complex
modes are not included the solution may not converge or
may converge to the wrong answer.

IV. NUMERICAL RESULTS

This section presents numerical examples illustrating the
above analysis. The (w-B) diagrams for the two semi-
infinite waveguides in the region z<0 and z>0 are
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_ Fig. 5. (a) Variation of the percentage error in field intensity with
number of modes when complex modes are included. (b) Variation of
the percentage error in field intensity with number of modes when
complex modes are included.

shown in Figs. 2 and 3, respectively. The field solutions
due to the discontinuity are obtained with and without the
inclusion of the complex modes. To check the validity of
the solution, the total fields were computed from the
coefficients of expansion, and the boundary conditions
which these fields must satisfy at z=0 are verified. A
quantitative measure of the error in satisfying the bound-
ary conditions in the electric and magnetic field compo-
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Fig. 6. Network representation of the step discontinuity.

nents used in the computation is defined by

[s|(field component at z=0")
— (field comoponent at z=0")|*dS

(15)

N [s|(field component at z=0")
+ (field component at z=07)|?dS

where S is the guide cross section. It was found that when
the complex modes are not included, the boundary condi-
tions at z = 0 are not satisfied, regardless of the number of
modes included in the solution, as shown in Fig. 4. On the
other hand, when the complex modes are included in the
expansion, the boundary conditions are satisfied and the
error in the boundary conditions decreases monotonically
as the number of modes is increased, as shown in Fig. 5(a)
and (b).

The complete scattering matrix which completely char-
acterizes the step discontinuity is easily obtainable from
the results of the above analysis. A circuit representation
of the junction discontinuity is shown in Fig. 6. This
representation is an N-port network, with ports 1, 2,- - -, n,
corresponding to the modes in the dielectric-loaded wave-
guide in the region z <0, while the ports n,+1, n, +
2,- -+, N correspond to the modes in the waveguide region
z> Q. The expansion coefficients 4, and B, in (10) and
(11) can be taken as proportional to incident and scattered
waves on the multiport network. The prqportionalit}} con-
stants are the normalization factors (é,,h, ) or (ég, hp ),
respectively. Thus, when a unit incident wave of the mode
corresponding to port 1 is incident on port 1, the elements
of one row of the scattering matrix are computed as

—% . j=n;+1,---, N.
o <é\B/*nx’ hBJ*"1> ’ '

Other elements of the scattering matrix are similarly de-
fined. Scattering parameters for several cases in various
frequency bands were computed. Fig. 7 shows the varia-
tion with frequency of the scattering matrix coefficients for
a step discontinuity in a dielectric-loaded waveguide, with
¢, = 71. The parameters allow only one propagating mode
in the guide region z <0, and two modes in the region
z>0. A complex mode exists in the band of frequencies
shown. The 3 X3 scattering matrix elements shown in Fig.
7 correspond to the three propagating modes.
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Fig. 7. (a) Frequency variation of the scattering matrix elements
(S11+ 8515 S03, S33) of a step discontinuity. ¢ =0.120 in,, b =0.216 in,,
=016 in., d=0216 in, ¢, =71, ¢, =1. (b) Frequency variation of
the scattenng matrix elements of (S;; and S),) of a dielectric step
discontinuity. ¢ =0.120 in, b=0.216 in, ¢=10.16 in.,, d =0.216 in,,
€, =71, ¢, =1

Figs. 8 and 9 show the variation with frequency of the
2 X2 scattering matrix elements for a step discontinuity in
the dielectric-loaded waveguides in the X-band (7-10 GHz)
and millimeter-wave band (44-56 GHz), respectively.

V. CONCLUSION

It is shown through numerical calculations of specific
examples that complex modes are part of a complete set
that represent the total fields in dielectric-loaded wave-
guides. Solution of the step discontinuity problem _in a
dielectric-loaded waveguide has been obtained using mode
matching, and verification of the accuracy and conver-
gence of the solution has been presented. A circuit model
for the step discontinuity in a hybrid mode dielectric-
loaded waveguide is given in terms of the scattering matrix
of a multiport network.

Examples are presented in the microwave (C and X)
bands for the HE,; mode, as well as in the millimeter-wave
range. This type of transmission medium is useful for
millimeter, submillimeter, and optical wavelengths. In or-
der to reduce the transmission loss, higher order modes
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Fig. 8. Frequency variation of the scattering matrix elements of a step
discontinuity in an X-band dielectric-loaded waveguide. a = 0.120 in,,
b=045in, c=0161in, d=045in, ¢, =66, €, =1
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Fig. 9. Frequency variation of the scattering matrix elements of a step
discontinuity in a millimeter-wave dielectric-loaded waveguide. a =
0.015 in., b= 0.075 in., ¢=0.05 in., d =0.075 in., ¢, =2.55, ¢, =1.

may be used. The technique presented for the discontinu-
ity characterization is general and applicable for any mode
and frequency band.

APPENDIX
ANALYTIC EXPRESSIONS FOR THE INNER PRODUCTS
OF (9)

This Appendix gives analytic expressions of the inner
products defined in (9). The two waveguides have the same
outside conductor radius (c=4d) but different dielectric
radii (a # b). The field quantities in the two waveguides
are denoted by the suffixes i and j, respectively.

(Eyg,» Hyp)=— YHE{[<k32 - aiangIEj)F
+(aik32— ajyéEl)G]
+ [— aiajyflEjH—F ki — ajyf{EjJ-i— aikgK]

+ [kiM— aiajy}zlEjL + kN — ajyflE/O]}
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<EHEjv HHE,> = YHEJ{ [(kl2 - “i“jY%IE,)F
+(ak? - a,v3g ) G|
— [k + o k3T — avhp K — a,0,vp H]|
~ [k3L + k30 — a, vk N — a0, v M )
(Erg,» Hg) = Yrg [F— H~ L]
(Eqg,, Hrp,) =Yg [F— H~ L]
(Exy,» Hrn) = = Yrm, [K3F — k31 — k3M ]
(Exw,» Hrn) = = You, [ K2F = k2 = k3M]
(Eyg,» Hyp) = = vam | [ (K — vhe02) 0
+ (k12 - Y%IE,)O‘:S]
— KT+ ¥} 02U+ o, (i, — K3V |
(Erp,, Hrg ) =v1s {Q+ U}
(Erm, Hrv) =~ v { KIQ + k3T }

1| Kb
M= —HzLﬂ o J(¢£b)R, (§b)
19y

fg SR.($D)R,(§ b)J
N= {2{2 n(fb) ( )
0= {2{2 J(&b)P, (f b)

l:( 5252) nz(gtb)-}_ Jn/z(gzr)
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1 | ¢a
=g}‘Lz 2 J(¢&a) (& a)

2

€a
+$2 £ I (¢, ‘Z)J(E a)}

G= §2£2 n(sa) ( )

1| g%r
izg-z[gz §'7 J(&r) P/ (§ ")
(% r ’
+§»2+$2 ,,(:Sr)P(fr)}

a

1 [ &xr
Iz??s“?{sz hEDR(Lr)
tr ’
- enn, (o)
b
5%2’ (&) P,(8, r)
K= 5252 J(&7)R, (;r)
1 [ %0
L {2{2[;2 {2 n(gb)P ({b)
$%.b
+§2 {2 n(gb)P (g‘b)jl

2
g_b (E6) (&, b)}
= *sjfnz(f b)
7'2 nZ 2 2
T=sa ||V g | Rallr) = RE(Gr)
2 C
= E;Rn(gi’)R;(gzr):l
! b
7'2 )12 2 2
U= |1+ g | Bir) = B (r)
2 (o
— EPn(glr)P”/(g‘lr)]
i h
ZIHED).

G

Note that in the above equations,

(1l

3]

{4

15]

g=ki+y 2=-(k}+v})

g=ki+y  g=-(K+7).
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