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Abstract —The mode-matching techniqne is applied to model step dis-

continuities in dielectric-loaded cylindrical wavegnide excited by hybrid

modes. It is shown that the solution for the fields obtained by mode

matching does not converge unless complex modes are included in the field

expansion, If the structure parameters and operating frequency allow for

the existence of complex modes, then the purely propagating and evanes-

cent mode fields do not form a complete set, unless complemented by the

complex mode fields. Numerical results are presented that clearly illustrate

the role of the complex mode fields in the modeling of step dkcontinuities.

Examples are included illustrating the representation of the step dkconti-

nuities by a multiport scattering matrix.

I. INTRODUCTION

I THAS BEEN shown [1]-[3] that inhomogeneously filled

waveguides can support, in addition to the evanescent

and the propagating modes, complex modes, characterized

by complex propagation constants. Recently, a generalized

rigorous analysis of lossless inhomogeneously filled wave-

guides [4] and numerical methods for the investigation of

their properties [5] have been presented, which derived

many important properties of complex modes. Generally,

numerical search for the propagation constants of complex

modes is a much more difficult problem than for the

normal propagating and evanescent modes. Complex

modes usually exist for very limited ranges of structure

parameters and frequency. When solving for discontinuity

problems in guiding structures which could support com-

plex modes one is always faced with the problem of

whether it is necessary to consider and include complex

modes in the solution. This question has recently been

addressed for the problem of finline discontinuities [6],

where it was shown that ignoring a complex mode results

in violation of complex power conservation across the

discontinuity.

This paper analyzes the step discontinuity problem in a

dielectric-loaded waveguide, together with the role of com-

plex modes in the solution of such a problem. The general
structure under consideration is shown in Fig. l(a). It

consists of two semi-infinite dielectric-loaded cylindrical

waveguides of different cross-sectional dimensions joined

at the plane z = O. A single hybrid mode of unit amplitude
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Fig, 1. Step discontinuity at the Junction between two semi-infinite
dielectric-loaded waveguldes. (b) DAectric-loaded waveguide

(HE~~) is incident from z <0 on the discontinuity. (The

mode designation used throughout this paper is that intro-

duced in [7]. Here HE.~ denotes a “hybrid” mode whose

fields have ~ variations sin n+ and cos n+ and whose

propagation constants are the m th root of the characteris-

tic equation. This designation should not be confused with

“hybrid magnetic” HE and the “hybrid electric” EH des-
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ignation.) It is desired to determine the amplitudes of all

the reflected and transmitted hybrid modes. In particular,

if complex modes can exist in either or both waveguides

and these complex modes are included or excluded from

the solution, what are the difference in the resulting scat-

tering matrices?

Structures of this type can be encountered in applica-

tions in the millimeter-wave and optical frequency bands,

such as in periodic structures for filtering, traveling wave

tubes, backward wave oscillators, antennas and radiating

elements, branching couplers for optical fibers, and mil-

limeter-wave dielectric-loaded waveguides. The method of

analysis and the results provide an accurate circuit model

for the characterization of the step discontinuity in a

dielectric waveguide for any hybrid mode excitation.

Before presenting the solution using mode matching, the

properties of complex modes on cylindrical dielectric-

Ioaded waveguides are summarized and typical numerical

data on these modes are presented.

II. COMPLEX MODES ON DIELECTRIC-

LOADED WAVEGUIDES

Consider the infinite dielectric-loaded circular cylindri-

cal waveguide shown in Fig. l(b). Suppressing the axial

propagation factor e– y’ and time vmiation factor e@’C,the

electromagnetic field components of the hybrid HE~~

modes in the guide are given by [7]

Ez=AR; (gir”)cosm) (la)

jqH, = ayAPn($ir) sin n+ (lb)
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where i=lfor O<r <a and i=2fora<r<b, Aisan

arbitrary constant, and

f’n(4’lr)=Jn(tl~), O<i-<a (3a)

Pn(t2r)

a<r<b (3b)
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Fig. 2. (Q–(3) diagram for the region z <0. c = 0.35 in., d = 0.5 in.,
c,, = 37, <,2 =1.

~.(tlr) =-t(&lr), O<r<a (4a)

Rn(&2r)

a<r<b (411)

(5)

In (3) through (6), J.(.), I.(.), and K.(. ) are the Bessel

functions and the modified Bessel functions of the first

and second kinds, respectively.

The characteristic equation for the propagation constant

y is

U:+ k~a2V~Wn = O (7)

where

The propagation constant y is related to &l and &2 by (2).

Complex modes are characterized by a complex propa-

gation constant y which is obtained by searching for

complex roots of the characteristic equation (7). Since the

characteristic function in (7) is a real even function of y,

its complex roots occur in conjugate pairs. Further, if y is

a root, then ( – y) is also a’ root. It therefore results that

there is always a quadruple of complex roots: ~ y and
+ y*. In an infinite guide with no sources at infinity, a

combination of a pair of complex conjugate modes must

always be present. This pair will carry only reactive power,

no net real average pcjwer. Typical (u –~ ) diagrams for

two dielectric-loaded waveguides with parameters that al-

low complex modes to Ioe present are shown in Figs. 2 and

3. In these figures, the propagation constants y = a + J3 of
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Fig. 3, (o–~) diagram for the region z >0. a = 0.25 in., b = 0.5 in.,
c,, = 37, 6,2 =1.

the hybrid modes with angular variation eJ4 in the dielec-

tric-loaded waveguide are plotted versus frequency. The

solid curve is either the purely real attenuation constant

(au ) or the purely imaginary propagation constant (flu).

The dotted curves are the complex propagation constant

ya. Complex propagation in Fig. 3 occurs in the frequency

ranges 1.7 GHz < ~ <3.01 GHz and 5.22 GHz < ~ <5.64

GHz for the hybrid modes (HEII, HE12) and (HE15,

HEIC), respectively. It has been shown [4] that the complex

modes are linearly independent of all other propagating

and evanescent modes occurring at the same frequency.

Therefore expansion of any arbitrary field over the cross

section of the dielectric-loaded waveguide at any frequency

requires the inclusion of all complex modes that may exist.

Hybrid modes, including complex modes, are complete

and orthogonal over the cross sections of the guide. The

orthogonality is expressed by the inner product:

where j and k stand for hybrid modes HE~~ and HE~,~,

with

13jk= o forj#k

=1 forj=k

and .?j, ~ ~ are the transverse electric and magnetic fields of

the HE~~ and HE~,,,, modes whose components E., E+,

H,, and H+ are given by (lc) and (id). Closed-form

expressions for the inner products (9) are given in the
Appendix.

The above properties are used in the following section to

obtain a model for the step discontinuities of the dielec-

tric-loaded waveguide shown in Fig. l(a) using the mode-

matching technique.

111. DISCONTINUITY CHARACTERIZATION

Consider a hybrid HEtin mode incident from z <0 on

the step discontinuity of the two semi-infinite dielectric-

loaded waveguides shown in Fig. l(a). Due to the presence

of this discontinuity, reflected and transmitted fields will

be generated in the regions z <0 and z >0, respectively.

Due to the uniformity of the structure in O, all the fields

will have the same azimuthal variation (e ~~~) as the inci-

dent hybrid mode. In order to calculate the reflected and

transmitted fields the total transverse fields are expanded

in terms of the appropriate hybrid waveguide modes on

both sides of the discontinuity. Thus:

for z(O:

E,= ;~le-’”z + ~Aj2~je”z (lOa)

.i

R,= ~~le-’”z - ~Aj~~je’” (lOb)

J

for z)O:

E,= ~ B#?~~e ‘y’” (ha)
k

Q, = ~Bk~Bke-yB’z. (Ilb)
k

A /.
Here ~~j, hAj, YAJ, ~?k) h ~k, and y~k are the transverse

electric and magnetic fields and the propagation constants

of the hybrid modes in the regions z <0 and z >0, respec-

tively. Enforcing the boundary conditions requiring that

the tangential electric and magnetic fields be continuous at

z = O then gives

~Al + EAj~Aj = ~ ‘k;Bk (12a)

j

~A1– ~Aj~~j= ~Bk~~k. (12b)

J k

Taking the inner product of (12a) with 1A and 2A with

(12b) and using the orthogonality relations (9), the follow-

ing infinite systems of equations in the unknown coeffi-

cients Ai and Bk are obtained.

~XihBk = 2($.,, ‘A,)S,I (13a)

~~kBk = 2A,(gA,> l.,) (13b)
k

where

Xik = (d~~, 1A, )+(2Ak, h,) (14a)

yk = (2Bj~ ‘,4[) -(%,, ‘Bk). (14b)

The numerical solution of the system (13a) for the un-

knowns B~ is achieved by truncating the infinite matrix

and solving the resulting finite system of linear equations.

Then the Ai’s are obtained using (13 b).

If the modes included in (10) and (11) form a complete

set (which must include any complex modes), then the

solution for the reflected and transmitted field coefficients

will always converge to the correct answer. If the complex

modes are not included the solution may not converge or

may converge to the wrong answer.

IV. NUMERICAL RESULTS

This section presents numerical examples illustrating the

above analysis. The (u – ~ ) diagrams for the two semi-

infinite waveguides in the region z <0 and z >0 are
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Fig. 4. Variation of the percentage error in field intensity with number

of modes without including complex modes.
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Fig. 5. (a) Variation of the percentage error in field intensity with

number of modes when complex modes are included. (b) Variation of
the percentage error in field intensity with number of modes when
complex modes are included.

shown in Figs. 2 and 3, respectively. The field solutions

due to the discontinuity are obtained with and without the

inclusion of the complex modes. To check the validity of

the solution, the total fields were computed from the

coefficients of expansion, and the boundary conditions

which these fields must satisfy at z = O are verified. A

quantitative measure of the error in satisfying the bound-

ary conditions in the electric and magnetic field compo-

z. o : 2>0

Fig. 6. Network representation of the step discontinmty,

nents used in the computation is defined by

(,l(field component at z = O+ )

- (field component at z = 0- ) 1’ CM ~15)
(=4

J.l(fieldcomponent at z = O+ )

+ (field component at z = O- ) 12d’

where S is the guide crass section. It was found that when

the complex modes are not included, the boundary condi-

tions at z = O are not satisfied, regardless of the number of

modes included in the solution, as shown in Fig. 4. On the

other hand, when the complex modes are included in the

expansion, the boundary conditions are satisfied and the

error in the boundary conditions decreases monotonically

as the number of modes is increased, as shown in Fig. 5(a)

and (b).

The complete scattering matrix which completely char-

acterizes the step discontinuity is easily obtainable from

the results of the above analysis. A circuit representation

of the junction discontinuity is shown in Fig. 6. This

representation is an N-port network, with ports 1, 2,. c ., n ~

corresponding to the modes in the dielectric-loaded wave-

guide in the region z <O, while the ports nl + 1, rzl +

2,... , N correspond to the modes in the waveguide region
z > (). The expansion coefficients A, and Bk in (10) and

(11) can be taken as prc)portional to incident and scattered

waves on the multiport network. The proportionality con-. ,.
stants are the normalization factors ( t~,, i%~,) or ( EB,, h ~, ),

respectively. Thus, when a unit incident wave of the mc~de

corresponding to port 1 is incident on port 1, the elements

of one row of the scattering matrix are computed as

(2A,. lA,)
S,l = A,

(2A,, AA,)‘
j=l,2,. ... n1

{;.4,7 ‘Al)

= ‘J-nl (tB,_H,, ‘B,-}l) ‘
j=rrl+l,. ... N.

Other elements of the scattering matrix are similarly de-

fined. Scattering parameters for several cases in various

frequency bands were computed. Fig. 7 shows the varia-

tion with frequency of the scattering matrix coefficients for

a step discontinuity in a dielectric-loaded waveguide, with

C, = 71. The parameters allow only one propagating mode

in the guide region z <0, and two modes in the region

z >0. A complex mode exists in the band of frequencies

shown. The 3 x 3 scattering matrix elements shown in Fig.

7 correspond to the three propagating modes.
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Fig. 7. (a) Frequency variation of the scattering matrix elements

(Sll, S21, S23, S33) of a step discontinuity. a = 0.120 in., b = 0.216 in.,

c = 0.16 in., d = 0.216 in., <,1= 71, C,Z= 1. (b) Frequency variation of

the scattering matrix elements of (S13 and S22) of a dielectric step

discontinuity. a = 0.120 in., b = 0.216 in., c = 0.16 in., d = 0.216 in.,
C,l = 71, <,2=1.

Figs. 8 and 9 show the variation with frequency of the

2 x 2 scattering matrix elements for a step discontinuity in

the dielectric-loaded waveguides in the X-band (7-10 GHz)

and millimeter-wave band (44–56 GHz), respectively.

V. CONCLUSION

It is shown through numerical calculations of specific

examples that complex modes are part of a complete set

that represent the total fields in dielectric-loaded wave-

guides. Solution of the step discontinuity problem.,in a

dielectric-loaded waveguide has been obtained using mode

matching, and verification of the accuracy and conver-

gence of the solution has been presented. A circuit model

for the step discontinuity in a hybrid mode dielectric-

loaded waveguide is given in terms of the scattering matrix

of a multiport network.

Examples are presented in the microwave (C and X)

bands for the HEII mode, as well as in the millimeter-wave

range. This type of transmission medium is useful for

millimeter, submillirneter, and optical wavelengths. In or-

der to reduce the transmission loss, higher order modes
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0.0
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Fig. 8. Frequency variation of the scattering matrix elements of a step
discontinuity in an X-band dielectric-loaded waveguide. a = 0.120 in.,
b = 0.45 in., c = 0.16 in., d = 0,45 in., c,, = 6.6, c,, =1

Fig. 9. Frequency variation of the scattering matrix elements of a step

discontinuity in a millimeter-wave dielectric-loaded waveguide. u =

0.015 in., b = 0.075 in., c = 0.05 in., d = 0.075 in., c,, = 2.55, 67,=1.

may be used. The technique presented for the discontinu-

ity characterization is general and applicable for any mode

and frequency band.

APPENDIX

ANALYTIC EXPRESSIONS FOR THE INNER PRODUCTS

OF (9)

This Appendix gives analytic expressions of the inner

products defined in (9). The two waveguides have the same

outside conductor radius (c = a!) but different dielectric

radii (a + b). The field quantities in the two waveguides

are denoted by the suffixes i and j’, respectively.

([( )(EHE,, HHE,) = – YHE, k: – aiajy&E, F

( H
+ aik: – ajy& G

+ [ – aiajy:E,H + k:I – a,y&J + aik:K]

[
+ k:kf – aiajy:E, L + aik:N – CYly:E,O 1}
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{[((EHE,, HHE,) = YHE, k? - aiajy~E, ) F

)1+(a/k: – a,y:~r G

.
[ k:I + alk:J – aiy&, K – a,al&,H 1
[- k~L + aJk~O – a,y~E N – a,aly&M 1}

(~TE,~HTE,)=YTE,[~-~-L]

(ETE,2HTE,) =YTE, [F-H-L]

(ET~,, H,~,) = - yT~, [k&’- kjl - k~M]

(ET~,, H,~,) = - yT~, [k:F - k:l - k;A4]

(E~q , H~E1) = – y~q ([( k; – y&X;) Q

)1+(k; – y:~, al~

( )]– k;T+ y;e,a~u+ a, y;~, – k; V

(Em,, HT,l)=ym,{Q+U}

(~Tlvlr, %vr) = - yT~,{k@ + @}

where

[1]

[2]

[3]

[4]

[5]

[6]

12EFERENCES

P. J. B. Clarricoates and B. C Taylor, “Evanescent and propagating
modes of dielectric loaded circular wavegnide,” Proc. Inst. Elec.
Eng., vol. 111, pp. 1951-1956, dec. 1964.

T. Tamir and A. A. Oliner, ‘<Gtnded complex modes,” Proc. Imr.
Elec. 13rg., vol. 110, no. 2, pp. 310-324, Feb. 1963.

S. B. Rayevskiy, “Some properties of complex waves m a double
layer, circular, shielded waveguide,” Radw Eitg. Electron. Ph.vs., vol.
21, pp. 36-39, 1976.

A. S. Omar and K. F. Schunemann, “Complex and backward-wave
modes in inhornogeneously and amsotroplcally fdled wavegud:s,”
IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 268–275,
Mar. 1987.
K. A. Zalu and C. Chen, “Complex modes in dielectric loaded
wavegnides,” in IEEE A P-S Int. Symp. Dg., June 1987, pp. 8--11.
A. S. Omar and K. F, Schunemann, “The effect of complex mc)des

at finhne discontinuities,” IEEE Trans. kficrowaue Theoiy Tech.,
vol. MTT-34, pp. 1508–1514, Dec. 1986.



1810 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 12, DECEMBER 1988

[7] K. A, Zaki and A. E. Atia, “Modes in dielectric loaded waveguides

and resonators,” IEEE Trans. Microwave Theory Tech., vol. MIT-31,

pp. 1039-1045, Dec. 1983.

Kawthar A. Zaki (SM85) received the B.S. de-

gree (with honors) from Ain Shams University,

Cairo, Egypt, in 1962 and the M.S. and Ph.D.
degrees from the University of California, Berke-
ley, in 1966 and 1969, respectively, all in electri-
cal engineering.

From 1962 to 1964, she was a Lecturer in the

Department of Electrical Engineering, Ain Shams

University. From 1965 to 1969, she held the
position of Research Assistant in the Electronic
Research Laboratory. University of California,

Berkeley. She joined the Electrical Engineering Department, University

of Maryland, College Park, in 1970, where she is presently Professor of
Electrical Engineering. Her research interests are in the areas of electro-

magnetic, microwave circuits, optimization, computer-aided design, and

optically controlled microwave and millimeter-wave devices.

Dr. Zaki is a member of Tau Beta Pi.

Seng-Woon Chen (S’87) was born in Keelung,
Taiwan, in 1961. He received the B.S. degree in

electrical engineering from National Taiwan

University in 1982.

During the years 1982–1984, he was with the
China Military Police Headquarters as a member

of the technical staff, Beginning in 1984, he
spent two years as a member of the technical
staff at Microelectronics Technology Inc, Tai-
wan, where his research deaft mainly with K-
band MESFET dielectric resonator oscillators,

voltage-controlled oscillators, and phase-locked oscillators. Since 1986, he

has been a graduate student in the Electrical Engineering Department,

University of Maryland at College Park, where he is working toward the

Ph.D degree under the supervision of Dr. K. A. Zaki. His research

interests are the modeling of microwave and millimeter-wave circuits.

Chunming Chen (S’85) was born in Taiwan, Re-
pubfic of China, in 1958. He received the B.S.
degree from the National Tsing Hua University,
Taiwan, in 1981 and the M.S. degree from the

University of Maryland, College Park, in 1985,
both in electrical engineering. Since 1984, he has

worked as a research assistant in Department of

Electrical Engineering, University of Maryland,

College Park, He is now working towards the

Ph.D. degree in the area of microwave compo-

nents and circoits.


